Optimal Control with Adaptive Weighting Coefficients for Integrated Vehicle Dynamics Control
نویسنده
چکیده
In this work, an optimal control scheme with adaptive weighting coefficients is presented which coordinates different vehicle dynamics control objectives, thus ruling out possible conflicts among them. In a new approach, the weighting coefficients in optimal control are adjusted according to the vehicle state in the phase plane in such a way that a priority is given to each objective of handling and stability in each region. The optimal control acts as a high-level control for the vehicle body, which determines the body lateral force and yaw moment for stable vehicle motion. The body lateral force and yaw moment provide the inputs to the mid-level force (control) distribution module, which works out the desired lateral and longitudinal forces at each wheel. Therefore, the high-level control objectives are allocated to individual tire forces in an optimal manner with the assumption of a 4-wheel-independent car. A low-level control uses the desired individual tire forces to compute the steering angle and applied torque at each wheel. Simulation tests with a nonlinear vehicle model are conducted and comparison with the well-recognized work in the literature is made to show the efficiency of the proposed method.
منابع مشابه
Stability of Three-Wheeled Vehicles with and without Control System
In this study, stability control of a three-wheeled vehicle with two wheels on the front axle, a three-wheeled vehicle with two wheels on the rear axle, and a standard four-wheeled vehicle are compared. For vehicle dynamics control systems, the direct yaw moment control is considered as a suitable way of controlling the lateral motion of a vehicle during a severe driving maneuver. In accorda...
متن کاملOptimal Control via Integrating the Dynamics of Magnetorheological Dampers and Structures
Magnetorheological (MR) dampers have the advantage of being tuned by low voltages. This has attracted many researchers to develop semi-active control of structures in theory and practice. Most of the control strategies first obtain the desired forces of dampers without taking their dynamics into consideration and then determine the input voltages according to those forces. As a result, these st...
متن کاملEnhancement of Articulated Heavy Vehicle Stability by Optimal Linear Quadratic Regulator (LQR) Controller of Roll-yaw Dynamics
Non-linear characteristic of tire forces is the main cause of vehicle lateral dynamics instability, while direct yaw moment control is an effective method to recover the vehicle stability. In this paper, an optimal linear quadratic regulator (LQR) controller for roll-yaw dynamics to articulated heavy vehicles is developed. For this purpose, the equations of motion obtained by the MATLAB sof...
متن کاملVehicle Stabilization via a Self-Tuning Optimal Controller
Nowadays, using advanced vehicle control and safety systems in vehicles is growing rapidly. In this regard, in recent years new control systems, called VDC, have been introduced. These systems stabilize vehicle yaw motion, by yaw moment resulted from tire controlling forces. In this paper, an adaptive optimal controller applied to a vehicle to obtain a satisfactory lateral and yaw stability. To...
متن کاملFuzzy Adaptive Control of Unmanned Aerial Vehicle for Carrying Time-Varying Cargo on Predefined Path
At present, the use of unmanned aerial vehicles (UAVs) has been increased dramatically. The reasons for this development are cheapness, smallness, simplicity, and diversity of missions. The simplicity of guidance and control of multi-rotor drones is that they are equipped with an autopilot system. This system is responsible for flying control. UAVs do not have a high weight and often have three...
متن کامل